UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Northwest Region 7600 Sand Point Way N.E., Bldg. 1 Seattle, WA 98115 Refer to: 2003/00731 November 19, 2003 Mr. Lawrence C. Evans U.S. Army Corps of Engineers Attn: Mary Headley Portland District, CENWP-CO-GP P.O. Box 2946 Portland, OR 97208-2946 Re: Endangered Species Act Section 7 Formal Consultation and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation for the Construction of a Residential Dock and Covered Moorage by Mr. Marion Skoro, Sauvie Island, Columbia River Mile 100, Multnomah County, Oregon (Corps No. 200200937) Dear Mr. Evans: Enclosed is a biological opinion (Opinion) prepared by NOAA's National Marine Fisheries Service (NOAA Fisheries) pursuant to section 7 of the Endangered Species Act (ESA) for the Construction of a Residential Dock and Covered Moorage by Mr. Marion Skoro, Sauvie Island, Columbia River Mile 100, Multnomah County, Oregon. The Corps of Engineers (COE) determined that the action may adversely affect Snake River sockeye salmon (*Oncorhynchus nerka*), Snake River fall chinook salmon (*O. tshawytscha*), Snake River spring/summer chinook salmon, Upper Columbia River spring-run chinook salmon, Lower Columbia River chinook salmon, Upper Willamette River chinook salmon, Columbia River chum salmon (*O. keta*), Snake River steelhead (*O. mykiss*), Upper Columbia River steelhead, Middle Columbia River steelhead, Upper Willamette River steelhead, and Lower Columbia River steelhead, or destroy or adversely modify designated critical habitats and requested formal consultation on this action. NOAA Fisheries concludes in this Opinion that the proposed action is not likely to jeopardize the continued existence of the above listed species or destroy or adversely modify designated critical habitat. Pursuant to section 7 of the ESA, NOAA Fisheries has included reasonable and prudent measures with non-discretionary terms and conditions that NOAA Fisheries believes are necessary and appropriate to minimize the potential for incidental take associated with this project. This document also serves as consultation on essential fish habitat (EFH) pursuant to section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and its implementing regulations (50 CFR Part 600). NOAA Fisheries concludes that the proposed action will adversely affect designated EFH for coho salmon and chinook salmon and starry flounder (*Platyichthys stellatus*). As required by section 305(b)(4)(A) of the MSA, included are conservation recommendations that NOAA Fisheries believes will avoid, minimize, mitigate, or otherwise offset adverse effects on EFH resulting from the proposed action. As described in the enclosed consultation, 305(b)(4)(B) of the MSA requires that a Federal action agency must provide a detailed response in writing within 30 days after receiving an EFH conservation recommendation. Questions regarding this letter should be directed to Christy Fellas of my staff in the Oregon Habitat Branch at 503.231.2307. Sincerely, D. Robert Lohn Regional Administrator FI Michael R Course # Endangered Species Act - Section 7 Consultation **Biological Opinion** # Magnuson-Stevens Fishery Conservation and Management Act **Essential Fish Habitat Consultation** Construction of a Residential Dock and Covered Moorage by Mr. Marion Skoro, Sauvie Island, Columbia River Mile 100, Multnomah County, Oregon (Corps No. 200200937) Agency: U.S. Army Corps of Engineers Consultation Conducted By: NOAA's National Marine Fisheries Service, Northwest Region Date Issued: November 19, 2003 F.1 $\frac{\text{Michael R Course}}{\text{D. Robert Lohn}}$ Issued by: Regional Administrator Refer to: 2003/00731 ## TABLE OF CONTENTS | 1. | INTROD | OUCTION | <u>1</u> | |----|---------------|---|-----------| | | 1.1 | Background | | | | 1.2 | Proposed Action | · | | | | • | | | 2. | ENDANG | GERED SPECIES ACT | <u>2</u> | | | 2.1 | Biological Opinion | <u>2</u> | | | | 2.1.1 Biological Information | <u>2</u> | | | | 2.1.2 Evaluating Proposed Action | <u>2</u> | | | | 2.1.3 Biological Requirements | <u>3</u> | | | | 2.1.4 Environmental Baseline | <u>3</u> | | | | 2.1.5 Analysis of Effects | <u>6</u> | | | | 2.1.5.1 Direct Effects of the Proposed Action | <u>6</u> | | | | 2.1.5.2 Cumulative Effects | | | | | 2.1.5.3 Effects to Critical Habitat | <u>10</u> | | | | 2.1.6 Conclusion | | | | | 2.1.7 Reinitiation of Consultation | <u>11</u> | | | 2.2 | Incidental Take Statement | <u>11</u> | | | | 2.2.1 Amount or Extent of the Take | <u>11</u> | | | | 2.2.2 Reasonable and Prudent Measures | <u>12</u> | | | | 2.2.3 Terms and Conditions | <u>12</u> | | | | | | | 3. | | SON-STEVENS ACT | | | | 3.1 | Background | | | | 3.2 | Identification of EFH | | | | 3.3 | Proposed Actions | | | | 3.4 | Effects of Proposed Action | | | | 3.5 | Conclusion | | | | 3.6 | EFH Conservation Recommendations | | | | 3.7 | Statutory Response Requirement | | | | 3.8 | Supplemental Consultation | <u>24</u> | | | TIMES : 5 | | a - | | 4. | LITERA | TURE CITED | 25 | #### 1. INTRODUCTION ## 1.1 Background On June 11, 2003, NOAA's National Marine Fisheries Service (NOAA Fisheries) received a letter from the U.S. Army Corps of Engineers (COE) requesting formal consultation pursuant to the Endangered Species Act (ESA) for the issuance of a permit under section 10 of the Rivers and Harbors Act to Mr. Marion Skoro to allow a new residential boat dock and moorage to be constructed on Sauvie Island at river mile 100, Columbia River, Multnomah County, Oregon. The COE determined the proposed action was likely to adversely affect the following ESA-listed species: Snake River (SR) sockeye salmon (*Oncorhynchus nerka*), SR fall chinook salmon (*O. tshawytscha*), SR spring/summer chinook salmon, Upper Columbia River (UCR) spring-run chinook salmon, Lower Columbia River (LCR) chinook salmon, Upper Willamette River (UWR) chinook salmon, Columbia River (CR) chum salmon (*O. keta*), SR steelhead (*O. mykiss*), UCR steelhead, Middle Columbia River (MCR) steelhead, UWR steelhead, and LCR steelhead. Critical habitat is designated in the project area for SR sockeye, spring/summer chinook and fall chinook salmon. Species' information references, listing and critical habitat designation dates and take prohibitions are listed in Table 1. The objective of this Opinion is to determine whether the proposed action is likely to jeopardize the continued existence of the ESA listed species for these species. This consultation is conducted pursuant to section 7(a)(2) of the ESA and its implementing regulations, 50 CFR 402. ## 1.2 Proposed Action The applicant proposes to construct a private boat dock and covered moorage for two boats. The six piling needed for the project will consist of four 16-inch piles and two 12-inch piles along the walkway and the perimeter of the covered moorage. The aluminum gangway will be 4 feet wide by 35 feet long, connecting to a 106-foot long T-shaped dock. The first 98 feet of the dock will be 6 feet wide and the riverward end of the dock will be 8 feet wide and 60 feet long. The boat moorage will measure 48 feet wide, 32 feet deep and 19.5 feet high, measured from waterline to peak of the roof. Two openings for boat access would measure 12 feet wide by 11 feet high. Two windows facing the shore on the covered moorage are 6 feet wide by 4 feet high. #### 2. ENDANGERED SPECIES ACT ## 2.1 Biological Opinion ## 2.1.1 Biological Information The action area is defined by NOAA Fisheries regulations (50 CFR 402) as "all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action." The action area is the Columbia River including the streambed, streambank, water column and adjacent riparian zone at river mile 100 and 200 feet upstream and 300 feet downstream of the construction area. Essential habitat features for salmonids are: Substrate, water quality, water quantity, water temperature, water velocity, cover/shelter, food (juvenile only), riparian vegetation, space, and safe passage conditions. The proposed action may affect the essential habitat features of water quality, cover/shelter, riparian vegetation and space. The Columbia River within the action area serves as a rearing and migration area for listed salmonids. ## 2.1.2 Evaluating Proposed Action The standards for determining jeopardy are set forth in section 7(a)(2) of the ESA as defined by 50 CFR Part 402. NOAA Fisheries must determine whether the action is likely to jeopardize the listed species and/or whether the action is likely to destroy or adversely modify critical habitat. This analysis involves the initial steps of: (1) Defining the biological requirements and current status of the listed species; and (2) evaluating the relevance of the environmental baseline to the species' current status. Subsequently, NOAA Fisheries evaluates whether the action is likely to jeopardize the listed species by determining if the species can be expected to survive with an adequate potential for recovery. In making this determination, NOAA Fisheries must consider the estimated level of mortality attributable to: (1) Collective effects of the proposed or continuing action; (2) the environmental baseline; and (3) any cumulative effects. If NOAA Fisheries finds that the action is likely to jeopardize the listed species, NOAA Fisheries must identify reasonable and prudent alternatives for the action. NOAA Fisheries also evaluates whether the action, directly or indirectly, is likely to destroy or adversely modify the listed species' critical habitat. NOAA Fisheries must determine whether habitat modifications appreciably diminish the value of critical habitat for both survival and recovery of the listed species. NOAA Fisheries identifies those effects of the
action that impair the function of any essential element of critical habitat. NOAA Fisheries then considers whether such impairment appreciably diminishes the habitat's value for the species' survival and recovery. If NOAA Fisheries concludes that the action will adversely modify critical habitat, it must identify any reasonable and prudent alternatives available. For the proposed action, NOAA Fisheries' jeopardy analysis considers direct or indirect mortality of fish attributable to the action. NOAA Fisheries' analysis considers the extent to which the proposed action impairs the function of essential elements necessary for migration, spawning, and rearing of listed species under the existing environmental baseline. ## 2.1.3 Biological Requirements The first step in the methods NOAA Fisheries uses for applying the ESA section 7(a)(2) to listed salmonids is to define the species' biological requirements that are most relevant to each consultation. NOAA Fisheries also considers the current status of the listed species, taking into account population size, trends, distribution and genetic diversity. To assess the current status of the listed species, NOAA Fisheries starts with the determinations made in its decision to list the species for ESA protection and also considers new data available that is relevant to the determination. The relevant biological requirements are those necessary for the listed species to survive and recover to a naturally-reproducing population level, at which time protection under the ESA would become unnecessary. Adequate population levels must safeguard the genetic diversity of the listed stock, enhance its capacity to adapt to various environmental conditions, and allow it to become self-sustaining in the natural environment. For this consultation, the biological requirements are improved habitat characteristics that function to support successful rearing and migration. The current status of the listed species, based upon their risk of extinction, has not significantly improved since the species were listed. ## 2.1.4 Environmental Baseline The most recent evaluation of the environmental baseline for the Columbia River is part of the NOAA Fisheries's Opinion for the Bonneville Power Administration's Habitat Improvement Program, issued in August 2003. A detailed evaluation of the environmental baseline of the Columbia River basin can be found in this biological opinion (NMFS 2003) (refer to: 2003/00750). The quality and quantity of fresh water habitat in much of the Columbia River basin have declined dramatically in the last 150 years. Forestry, farming, grazing, road construction, hydropower system development, mining, and development have radically changed the historical habitat conditions of the basin. More than 2,500 streams, river segments, and lakes in the Northwest do not meet federally-approved, state, and/or Tribal water quality standards and are now listed as water-quality-limited under section 303(d) of the Clean Water Act. Tributary water quality problems contribute to poor water quality when sediment and contaminants from the tributaries settle in mainstem reaches and the estuary. Most of the waterbodies in Oregon on the 303(d) list do not meet water quality standards for temperature. High water temperatures adversely affect salmonid metabolism, growth rate, and disease resistance, as well as the timing of adult migrations, fry emergence, and smoltification. Many factors can cause high stream temperatures, but they are primarily related to land-use practices rather than point-source discharges. Some common actions that cause high stream temperatures are the removal of trees or shrubs that directly shade streams, water withdrawals for irrigation or other purposes, and warm irrigation return flows. Loss of wetlands and increases in groundwater withdrawals contribute to lower base-stream flows that, in turn, contribute to temperature increases. Activities that create shallower streams also cause temperature increases. Many waterways in the Columbia River basin fail to meet Clean Water Act (CWA) and Safe Drinking Water Act (SDWA) water quality standards due to the presence of pesticides, heavy metals, dioxins and other pollutants. These pollutants originate from both point (industrial and municipal waste) and nonpoint (agriculture, forestry, urban activities, etc.) sources. The types and amounts of compounds found in runoff are often correlated with land use patterns; fertilizers and pesticides are found frequently in agricultural and urban settings, and nutrients are found in areas with human and animal waste. People contribute to chemical pollution in the basin, but natural and seasonal factors also influence pollution levels in various ways. Nutrient and pesticide concentrations vary considerably from season to season, as well as among regions with different geographic and hydrological conditions. Natural features, such as geology and soils, and land-management practices, such as stormwater drains, tile drainage and irrigation, can influence the movement of chemicals over both land and water. Salmon and steelhead require clean water and gravel for successful spawning, egg incubation, and fry emergence. Fine sediments clog the spaces between gravel and restrict the flow of oxygen-rich water to the incubating eggs. Pollutants, excess nutrients, low levels of dissolved oxygen, heavy metals, and changes in pH also directly affect the water quality for salmon and steelhead. Water quantity problems are also a significant cause of habitat degradation and reduced fish production. Millions of acres in the Columbia River basin are irrigated. Although some of the water withdrawn from streams eventually returns as agricultural runoff or groundwater recharge, crops consume a large proportion of it. Withdrawals affect seasonal flow patterns by removing water from streams in the summer (mostly May through September) and restoring it to surface streams and groundwater in ways that are difficult to measure. Withdrawing water for irrigation, urban consumption, and other uses increases temperatures, smolt travel time, and sedimentation. Return water from irrigated fields can introduce nutrients and pesticides into streams and rivers. Deficiencies in water quantity have been a problem in the major production subbasins for some ESUs that have seen major agricultural development over the last century. Water withdrawals (primarily for irrigation) have lowered summer flows in nearly every stream in the basin and thereby profoundly decreased the amount and quality of rearing habitat. In fact, in 1993, fish and wildlife agency, Tribal, and conservation group experts estimated that 80% of 153 Oregon tributaries had low-flow problems, two-thirds of which was caused (at least in part) by irrigation withdrawals (OWRD 1993). The Northwest Power Planning Council (NWPPC 1992) found similar problems in many Idaho, Oregon, and Washington tributaries. Blockages that stop downstream and upstream fish movement exist at many dams and barriers, whether they are for agricultural, hydropower, municipal/industrial, or flood control purposes. Culverts that are not designed for fish passage also block upstream migration. Being diverted into unscreened or inadequately screened water conveyances or turbines sometimes kills migrating fish. While many fish-passage improvements have been made in recent years, manmade structures continue to block migrations or kill fish throughout the basin. On the landscape scale, human activities have affected the timing and amount of peak water runoff from rain and snowmelt. Forest and range management practices have changed vegetation types and density that, in turn, affect runoff timing and duration. Many riparian areas, floodplains, and wetlands that once stored water during periods of high runoff have been destroyed by development that paves over or compacts soil—thus increasing runoff and altering natural hydrograph patterns. Land ownership has also played its part in the region's habitat and land-use changes. Federal lands, which compose 50% of the basin, are generally forested and situated in upstream portions of the watersheds. While there is substantial habitat degradation across all land ownerships, in general, habitat in many headwater stream sections is in better condition than in the largely nonfederal lower portions of tributaries (Doppelt *et al.* 1993, Frissell 1993, Henjum *et al.* 1994, Quigley and Arbelbide 1997). In the past, valley bottoms were among the most productive fish habitats in the basin (Stanford and Ward 1992, Spence *et al.* 1996, ISG 1996). Today, agricultural and urban land development and water withdrawals have significantly altered the habitat for fish and wildlife in these valley bottoms. Streams in these areas typically have high water temperatures, sedimentation problems, low flows, simplified stream channels, and reduced riparian vegetation. At the same time that some habitats were being destroyed by water withdrawals in the Columbia basin, water impoundments in other areas dramatically reduced habitat by inundating large amounts of spawning and rearing habitat and reducing migration corridors, for the most part, to a single channel. Floodplains have been reduced in size, off-channel habitat features have been lost or disconnected from the main channel, and the amount of large woody debris (large snags/log structures) in rivers has been reduced. Most of the remaining habitats are affected by flow fluctuations associated with reservoir management. More than 50% of the original marshes and spruce swamps in the estuary have been converted to industrial, transportation, recreational, agricultural, or urban uses. More than 3,000 acres of intertidal marsh and spruce swamp have been converted by human use since 1948 (LCREP 1999). Many wetlands along the shore in the upper reaches of the estuary have been converted to industrial and agricultural lands
after levees and dikes were constructed. Furthermore, water storage and release patterns from reservoirs upstream of the estuary have changed the seasonal pattern and volume of discharge. The peaks of spring/summer floods have been reduced and the amount of water discharged during winter has increased. ## 2.1.5 Analysis of Effects ## 2.1.5.1 Direct Effects of the Proposed Action ## **Turbidity from Construction** The effects of suspended sediment and turbidity on fish, as reported in the literature, range from beneficial to detrimental. Elevated total suspended solids (TSS) conditions have been reported to enhance cover conditions, reduce piscivorus fish/bird predation rates, and improve survival. Elevated TSS conditions have also been reported to cause physiological stress, reduce growth, and adversely affect survival. Of key importance in considering the detrimental effects of TSS on fish are the frequency and the duration of the exposure, not just the TSS concentration. Behavioral avoidance of turbid waters may be one of the most important effects of suspended sediments (DeVore *et al.* 1980, Birtwell *et al.* 1984, Scannell 1988). Salmonids have been observed to move laterally and downstream to avoid turbid plumes (Sigler *et al.* 1984, Lloyd 1987, Scannell 1988, Servizi and Martens 1991). Juvenile salmonids avoid streams that are chronically turbid, such as glacial streams or those disturbed by human activities, unless the fish need to traverse these streams along migration routes (Lloyd, 1987). Turbidity resulting from the pile driving and placement of gangways and floats will be brief, minor, and occur at times that are least sensitive for the species' life cycle. ## Pile Driving Pile driving often generates intense sound pressure waves that can injure or kill fish (Reyff 2003, Abbott and Bing-Sawyer 2002, Caltrans 2001, Longmuir and Lively 2001, Stotz and Colby 2001). The type and size of the pile, the firmness of the substrate into which the pile is being driven, the depth of water, and the type and size of the pile-driving hammer all influence the sounds produced during pile driving. Sound pressure is positively correlated with the size of the pile because more energy is required to drive larger piles. Wood and concrete piles produce lower sound pressures than hollow steel piles of a similar size, and may be less harmful to fishes. Firmer substrates require more energy to drive piles and produce more intense sound pressures. Sound attenuates more rapidly with distance from the source in shallow than in deep water (Rogers and Cox 1988). Impact hammers produce intense, sharp spikes of sound that can easily reach levels that harm fishes, and the larger hammers produce more intense sounds. Vibratory hammers, on the other hand, produce sounds of lower intensity, with a rapid repetition rate. Sound pressure levels (SPLs) greater than 150 decibels (dB) root mean square (RMS) produced when using an impact hammer to drive a pile have been shown to affect fish behavior and cause physical harm when peak SPLs exceed 180 dB (re: 1 microPascal). Surrounding the pile with a bubble curtain can attenuate the peak SPLs by approximately 20 dB and is equivalent to a 90% reduction in sound energy. However, a bubble curtain may not bring the peak and RMS SPLs below the established thresholds, and take may still occur. Without a bubble curtain, SPLs from driving 12 inch diameter steel pilings, measured at 10 m, will be approximately 205 dB_{peak} (Pentec 2003) and 185 dB_{rms}. With a bubble curtain, SPLs are approximately 185 dB_{peak} and 165 dBrms. Using the spherical spreading model to calculate attenuation of the pressure wave (TL = 50*log(R1/R2)), physical injury to sensitive species and life-history stages may occur up to 18 m from the pile driver, and behavioral effects up to 56 m. Studies on pile driving and underwater explosions suggest that, besides attenuating peak pressure, bubble curtains also reduce the impulse energy and, therefore, the potential for injury (Keevin 1998). Because sound pressure attenuates more rapidly in shallow water (Rogers and Cox 1988), it may have fewer deleterious effects there. Fish respond differently to sounds produced by impact hammers than they do to sounds produced by vibratory hammers. Fish consistently avoid sounds like those of a vibratory hammer (Enger *et al.* 1993; Dolat 1997; Knudsen *et al.* 1997; Sand *et al.* 2000) and appear not to habituate to these sounds, even after repeated exposure (Dolat, 1997; Knudsen *et al.* 1997). On the other hand, fish may respond to the first few strikes of an impact hammer with a 'startle' response, but then the startle response wanes and some fish remain within the potentially-harmful area (Dolat 1997). Compared to impact hammers, vibratory hammers make sounds that have a longer duration (minutes vs. milliseconds) and have more energy in the lower frequencies (15-26 Hz vs. 100-800 Hz) (Würsig, *et al.* 2000; Carlson *et al.* 2001; Nedwell and Edwards 2002). Details describing type of piles and pile driving methods were not provided by the COE. #### Treated Wood Migration of creosote and its components (e.g. copper and PAHs) from treated wood in lotic environments may adversely affect juvenile salmonid fishes (NMFS 1998). Copper is the main metal of concern because it is the most acutely toxic. Copper also leaches the most readily, followed by arsenic and chromium (Warner and Solomon 1990). Creosote contains over 300 compounds, including a variety of PAHs. Some PAHs are very toxic and bioconcentrate (NMFS 1998). Potential effects of elevated water column and sediments concentrations of copper and PAHs to listed salmonids include, but are not limited to: (1)Reduced growth and survival rates; (2) altered hematology; and (3) reproductive effects, including reduced frequency of spawning, reduced egg production, and increased deformities in fry (Sorensen 1991, Eisler 1998). Details describing type of materials used for construction were not provided by the COE. ## Over-water and In-water Structures Predator species such as northern pikeminnow (*Ptychocheilus oregonensis*), and introduced predators such as largemouth bass (*Micropterus salmoides*), smallmouth bass (*M. dolomieu*), black crappie (*Pomoxis nigromaculatus*) white crappie (*P. annularis*) and potentially, walleye (*Stizostedion vitreum*) (Ward *et al.* 1994, Poe *et al.* 1991, Beamesderfer and Rieman 1991, Rieman and Beamesderfer 1991, Petersen *et al.* 1990, Pflug and Pauley 1984, and Collis *et al.* 1995) may utilize habitat created by over-water structures (Ward and Nigro 1992, Pflug and Pauley 1984) such as piers, float houses, floats and docks (Phillips 1990). However, the extent of increase in predation on salmonids in the lower Columbia River resulting from over-water structures is not well known. Major habitat types used by largemouth bass include vegetated areas, open water and areas with cover such as docks and submerged trees (Mesing and Wicker 1986). During the summer, bass prefer pilings, rock formations, areas beneath moored boats, and alongside docks. Colle *et al.* (1989) found that, in lakes lacking vegetation, largemouth bass distinctly preferred habitat associated with piers, a situation analogous to the Columbia River. Marinas also provide wintering habitat for largemouth bass out of mainstem current velocities (Raibley *et al.* 1997). Bevelhimer (1996), in studies on smallmouth bass, indicates that ambush cover and low light intensities create a predation advantage for predators and can also increase foraging efficiency. Wanjala *et al.* (1986) found that adult largemouth bass in a lake were generally found near submerged structures suitable for ambush feeding. There are four major predatory strategies used by piscivorous fish. They: (1) Run down prey; (2) ambush prey; (3) habituate prey to a non-aggressive illusion; or (4) stalk prey (Hobson 1979). Ambush predation is probably the most common strategy; predators lie in wait, then dart out at the prey in an explosive rush (Gerking 1994). Predators may use sheltered areas that provide slack water to ambush prey fish in faster currents (Bell 1991). Light plays an important role in defense from predation. Prey species are better able to see predators under high light intensity, thus providing the prey species with an advantage (Hobson 1979, Helfman 1981). Petersen and Gadomski (1994) found that predator success was higher at lower light intensities. Prey fish lose their ability to school at low light intensities, making them vulnerable to predation (Petersen and Gadomski 1994). Howick and O'Brien (1983) found that in high light intensities prey species (bluegill) can locate largemouth bass before they are seen by the bass. However, in low light intensities, the bass can locate the prey before they are seen. Walters *et al.* (1991) indicate that high light intensities may result in increased use of shade-producing structures. Helfman (1981) found that shade, in conjunction with water clarity, sunlight and vision, is a factor in attraction of temperate lake fishes to overhead structure. An effect of over-water structures is the creation of a light/dark interface that allows ambush predators to remain in a darkened area (barely visible to prey) and watch for prey to swim by against a bright background (high visibility). Prey species moving around the structure are unable to see predators in the dark area under the structure and are more susceptible to predation. The incorporation of grating into all of the docks and translucent material used in the covered moorage allows for more light penetration and diffuses the light/dark interface. This will minimize the susceptibility of juvenile salmonids to piscivorous predation resulting from this project. Grating was not included in the design for the proposed project. In addition to piscivorous predation, in-water structures (tops of pilings) also provide perching
platforms for avian predators such as double-crested cormorants (*Phalacrocorax auritis*), from which they can launch feeding forays or dry plumage. Their high energy demands associated with flying and swimming create a need for voracious predation on live prey (Ainley 1984). Cormorants are underwater pursuit swimmers (Harrison 1983) that typically feed on mid-water schooling fish (Ainley 1984), but they are known to be highly opportunistic feeders (Derby and Lovvorn 1997; Blackwell *et al.* 1997; Duffy 1995. Double-crested cormorants are known to fish cooperatively in shallow water areas, herding fish before them (Ainley 1984). Krohn *et al.* (1995) indicate that cormorants can reduce fish populations in forage areas, thus possibly affecting adult returns as a result of smolt consumption. Because their plumage becomes wet when diving, cormorants spend considerable time drying out feathers (Harrison 1983) on pilings and other structures near feeding grounds (Harrison 1984). Placement of piles to support the dock structures will potentially provide for some usage by cormorants. Placement of antiperching devices on the top of the pilings would preclude their use by any potential avian predators. As proposed, the project does not include anti-perching devices on the tops of pilings. ## **Boating Activities** Residential docks and especially marinas are likely to have high levels of boating activity in their immediate vicinity, particularly beside floats. Specifically, docks may serve as a mooring area for boats or a staging platform for recreational boating activities. There are several impacts boating activity may have on listed salmonids and aquatic habitat. Directly, engine noise, prop movement, and the physical presence of a boat hull may disrupt or displace nearby fishes (Mueller 1980, Warrington 1999a). Boat traffic may also cause: (1) Increased turbidity in shallow waters; (2) uprooting of aquatic macrophytes in shallow waters; or (3) aquatic pollution, through exhaust, fuel spills, or release of petroleum lubricants (Warrington 1999b). Nordstrom (1989) indicates that boat wakes may also play a significant role in creating erosion in narrow creeks entering a estuary (areas that are extensively used by rearing juvenile salmonids). These boating impacts indirectly affect listed fish in a number of ways, including turbidity that may injure or stress affected fishes, and the loss of aquatic macrophytes may expose salmonids to predation, decrease littoral productivity, or alter local species assemblages and trophic interactions. Despite a general lack of data specifically for salmonids, pollution from boats may cause short-term injury, physiological stress, decreased reproductive success, cancer, or death for fishes in general. Further, pollution may also impact fishes by impacts to potential prey species or aquatic vegetation. The proposed project is not expected to significantly increase the effects of boat traffic on listed species since boat traffic associated with this project is from two small personal vessels. No fueling or service areas are proposed. #### 2.1.5.2 Cumulative Effects Cumulative effects are defined in 50 CFR 402.02 as "those effects of future State or private activities, not involving Federal activities, that are reasonably certain to occur within the action area of the Federal action subject to consultation." NOAA Fisheries is not aware of any specific future non-federal activities within the action area that would cause greater effects to listed species than presently occurs. Between 1990 and 2000, the population of Multnomah County increased by 13.1%. Thus, NOAA Fisheries assumes that future private and state actions will continue within the action area, increasing as population density rises. As the human population in the state continues to grow, demand for actions similar to the subject project likely will continue to increase as well. Each subsequent action may have only a small incremental effect, but taken together they may have a significant effect that would further degrade the watershed's environmental baseline and undermine the improvements in habitat conditions necessary for listed species to survive and recover. #### 2.1.5.3 Effects to Critical Habitat NOAA Fisheries designates critical habitat based on physical and biological features that are essential to the listed species. Essential elements for designated critical habitat include substrate, water quality, water quantity, water temperature, food, riparian vegetation, access, water velocity, space and safe passage. Effects to critical habitat are included in the effects description above. #### 2.1.6 Conclusion NOAA Fisheries has determined that, based on the available information, the proposed action is not likely to jeopardize the continued existence of listed species nor result in the destruction or adverse modification of critical habitat. NOAA Fisheries used the best available scientific and commercial data to analyze the effects of the proposed action on the biological requirements of the species relative to the environmental baseline, together with cumulative effects. These conclusions are based on the following considerations: (1) The dock and moorage will be constructed in the recommended in-water work window of November 1 - February 28, when the fewest numbers of listed species are likely to be present; (2) any increases in sedimentation and turbidity and sound pressure effects in the project area will be short-term and minor; (3) best management practices will be followed for all construction activities; and (4) with minimization measures incorporated into the project design, the proposed action is not likely to impair properly functioning habitat, or retard the long-term progress of impaired habitat toward proper functioning condition essential to the long-term survival and recovery at the population or ESU scale. ¹ U.S. Census Bureau, State and County Quickfacts, Coos County, Oregon. Available at http://quickfacts.census.gov/qfd/states/41/41051.html #### 2.1.7 Reinitiation of Consultation Consultation must be reinitiated if: (1) The amount or extent of taking specified in the incidental take statement is exceeded, or is expected to be exceeded; (2) new information reveals effects of the action may affect listed species in a way not previously considered; (3) the action is modified in a way that causes an effect on listed species that was not previously considered; or (4) a new species is listed or critical habitat is designated that may be affected by the action (50 CFR 402.16). ## 2.2 Incidental Take Statement The ESA at section 9 [16 USC 1538] prohibits take of endangered species. The prohibition of take is extended to threatened anadromous salmonids by section 4(d) rule [50 CFR 223.203]. Take is defined by the statute as "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct." [16 USC 1532(19)] Harm is defined by regulation as "an act which actually kills or injures fish or wildlife. Such an act may include significant habitat modification or degradation which actually kills or injures fish or wildlife by significantly impairing essential behavior patterns, including, breeding, spawning, rearing, migrating, feeding or sheltering." [50 CFR 222.102] Harass is defined as "an intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding, or sheltering." [50 CFR 17.3] Incidental take is defined as "takings that result from, but are not the purpose of, carrying out an otherwise lawful activity conducted by the Federal agency or applicant." [50 CFR 402.02] The ESA at section 7(o)(2) removes the prohibition from any incidental taking that is in compliance with the terms and conditions specified in a section 7(b)(4) incidental take statement [16 USC 1536]. ## 2.2.1 Amount or Extent of the Take NOAA Fisheries anticipates that the actions covered by this Opinion are reasonably certain to result in incidental take of listed species because of potential adverse effects from decreased water quality, sound pressure, bank hardening and over and in-water structures. Even though NOAA Fisheries expects some low level of incidental take to occur due to the actions covered by this Opinion, the best scientific and commercial data available are not sufficient to enable NOAA Fisheries to estimate a specific amount of incidental take to the species itself. In instances such as these, NOAA Fisheries designates the expected amount of take as "unquantifiable." Based on the information provided by the COE and other available information, NOAA Fisheries anticipates that an unquantifiable amount of incidental take could occur as a result of the action covered by this Opinion. The extent of the take is limited to disturbance resulting from construction activities within the action area. The action area is the Columbia River including the streambed, streambank, water column and adjacent riparian zone at River Mile 100.5 and 300 feet upstream and 300 feet downstream of the construction area. #### 2.2.2 Reasonable and Prudent Measures The measures described below are non-discretionary. They must be implemented so that they become binding conditions in order for the exemption in section 7(a)(2) to apply. The COE has the continuing duty to regulate the activities covered in this incidental take statement. If the COE fails to adhere to the terms and conditions of the incidental take statement through enforceable terms added to the document authorizing this action, or fails to retain the oversight to ensure compliance with these terms and conditions, the protective coverage of section 7(a)(2) may lapse. NOAA Fisheries believes that the
following reasonable and prudent measures are necessary and appropriate to avoid or minimize take of listed salmonid species resulting from the action covered by this Opinion. The COE shall include measures that will: - 1. Minimize incidental take from general construction by excluding unauthorized permit actions and applying permit conditions that avoid or minimize adverse effects to riparian and aquatic systems. - 2. Minimize incidental take from over-water and in-water structures by excluding unauthorized permit actions and applying permit conditions or project specifications that avoid or minimize adverse effects to riparian and aquatic systems. - 3. Complete a comprehensive monitoring and reporting program to ensure implementation of these conservation measures are effective at minimizing the likelihood of take from permitted activities. ## 2.2.3 Terms and Conditions To be exempt from the prohibitions of section 9 of the ESA, the COE must comply with the following terms and conditions, which implement the reasonable and prudent measures described above for each category of activity. - 1. To implement reasonable and prudent measure #1 (general conditions for construction, operation and maintenance), the COE shall ensure that: - a. <u>Timing of in-water work</u>. Work below the bankfull elevation² will be completed during the preferred in-water work period of November 1 to February 28, unless otherwise approved in writing by NOAA Fisheries. ² 'Bankfull elevation' means the bank height inundated by a 1.5 to 2-year average recurrence interval and may be estimated by morphological features such average bank height, scour lines and vegetation limits. - b. <u>Cessation of work</u>. Cease project operations under high flow conditions that may result in inundation of the project area, except for efforts to avoid or minimize resource damage. - c. <u>Pollution and Erosion Control Plan</u>. Prepare and carry out a pollution and erosion control plan to prevent pollution caused by surveying or construction operations. The plan must be available for inspection on request by COE or NOAA Fisheries. - i. <u>Plan Contents</u>. The pollution and erosion control plan will contain the pertinent elements listed below, and meet requirements of all applicable laws and regulations. - (1) The name and address of the party(s) responsible for accomplishment of the pollution and erosion control plan. - (2) Practices to prevent erosion and sedimentation associated with construction sites, equipment and material storage sites, fueling operations, and staging areas. - (3) Practices to confine, remove and dispose of excess concrete, cement, grout, and other mortars or bonding agents, including measures for washout facilities. - (4) A description of any regulated or hazardous products or materials that will be used for the project, including procedures for inventory, storage, handling, and monitoring. - (5) A spill containment and control plan with notification procedures, specific cleanup and disposal instructions for different products, quick response containment and cleanup measures that will be available on the site, proposed methods for disposal of spilled materials, and employee training for spill containment. - (6) Practices to prevent construction debris from dropping into any stream or waterbody, and to remove any material that does drop with a minimum disturbance to the streambed and water quality. - ii. <u>Inspection of erosion controls</u>. During construction, monitor instream turbidity and inspect all erosion controls daily during the rainy season and weekly during the dry season, or more often as necessary, to ensure the erosion controls are working adequately.³ - (1) If monitoring or inspection shows that the erosion controls are ineffective, mobilize work crews immediately to make repairs, install replacements, or install additional controls as necessary. - (2) Remove sediment from erosion controls once it has reached 1/3 of the exposed height of the control. ³ 'Working adequately' means that project activities do not increase ambient stream turbidity by more than 10% above background 100 feet below the discharge, when measured relative to a control point immediately upstream of the turbidity causing activity. - d. <u>Construction discharge water</u>. Treat all discharge water created by construction (*e.g.*, concrete washout, pumping for work area isolation, vehicle wash water, drilling fluids) as follows. - i. Water quality. Design, build and maintain facilities to collect and treat all construction discharge water using the best available technology applicable to site conditions. Provide treatment to remove debris, nutrients, sediment, petroleum hydrocarbons, metals and other pollutants likely to be present. - ii. <u>Discharge velocity</u>. If construction discharge water is released using an outfall or diffuser port, velocities may not exceed 4 feet per second, and the maximum size of any aperture may not exceed one inch. - iii. <u>Pollutants</u>. Do not allow pollutants including green concrete, contaminated water, silt, welding slag, sandblasting abrasive, or grout cured less than 24 hours to contact any wetland or the 2-year floodplain. - e. <u>Piling installation</u>. Install pilings as follows: - i. Drive each piling as follows to minimize the use of force and resulting sound pressure. - (1) Hollow steel pilings greater than 24 inches in diameter, and H-piles larger than designation HP24, are not authorized under this Opinion. - When impact drivers will be used to install a pile, use the smallest driver and the minimum force necessary to complete the job. Use a drop hammer or a hydraulic impact hammer, whenever feasible and set the drop height to the minimum necessary to drive the piling. - (3) When using an impact hammer to drive or proof steel piles, one of the following sound attenuation devices will be used to reduce sound pressure levels by 20 decibels. - (a) Place a block of wood or other sound dampening material between the hammer and the piling being driven. - (b) If currents are 1.7 miles per hour or less, surround the piling being driven by an unconfined bubble curtain that will distribute small air bubbles around 100% of the piling perimeter for the full depth of the water column.⁴ - (c) If currents greater than 1.7 miles per hour, surround the piling being driven by a confined bubble curtain (*e.g.*, a bubble ring surrounded by a fabric or metal sleeve) that ⁴ For guidance on how to deploy an effective, economical bubble curtain, see, Longmuir, C. and T. Lively, *Bubble Curtain Systems for Use During Marine Pile Driving*, Fraser River Pile and Dredge LTD, 1830 River Drive, New Westminster, British Columbia, V3M 2A8, Canada. Recommended components include a high volume air compressor that can supply more than 100 pounds per square inch at 150 cubic feet per minute to a distribution manifold with 1/16 inch diameter air release holes spaced every 3/4 inch along its length. An additional distribution manifold is needed for each 35 feet of water depth. - will distribute air bubbles around 100% of the piling perimeter for the full depth of the water column. - (d) Other sound attenuation devices as approved in writing by NOAA Fisheries. - f. <u>Piling removal</u>. If a temporary or permanent piling will be removed, the following conditions apply. - i. Dislodge the piling with a vibratory hammer. - ii. Once loose, place the piling onto the construction barge or other appropriate dry storage site. - iii. If a treated wood piling breaks during removal, either remove the stump by breaking or cutting 3 feet below the sediment surface or push the stump in to that depth, then cover it with a cap of clean substrate appropriate for the site. - iv. Fill the holes left by each piling with clean, native sediments, whenever feasible. ## g. <u>Treated wood</u>. - i. Projects using treated wood⁵ that may contact flowing water or that will be placed over water where it will be exposed to mechanical abrasion or where leachate may enter flowing water are not authorized, except for pilings installed following NOAA Fisheries' guidelines.⁶ Treated wood pilings must incorporate design features to minimize abrasion of the treated wood from vessels, floats or other objects that may cause abrasion of the piling. - h. <u>Preconstruction activity</u>. Complete the following actions before significant⁷ alteration of the project area. - i. <u>Marking</u>. Flag the boundaries of clearing limits associated with site access and construction to prevent ground disturbance of critical riparian vegetation, wetlands and other sensitive sites beyond the flagged boundary. - ii. <u>Emergency erosion controls</u>. Ensure that the following materials for emergency erosion control are onsite. - (1) A supply of sediment control materials (*e.g.*, silt fence, straw bales⁸). ⁵ 'Treated wood' means lumber, pilings, and other wood products preserved with alkaline copper quaternary (ACQ), ammoniacal copper arsenate (ACA), ammoniacal copper zinc arsenate (ACZA), copper naphthenate, chromated copper arsenate (CCA), pentachlorophenol, or creosote. ⁶ Letter from Steve Morris, National Marine Fisheries Service, to W.B. Paynter, Portland District, U.S. Army Corps of Engineers (December 9, 1998) (transmitting a document titled *Position Document for the Use of Treated Wood in Areas within Oregon Occupied by Endangered Species Act Proposed and Listed Anadromous Fish Species, National Marine Fisheries Service, December 1998*). ⁷ 'Significant' means an effect can be meaningfully measured, detected or evaluated. ⁸ When available, certified weed-free straw or hay bales will be used to prevent introduction of noxious weeds. - (2) An oil-absorbing, floating boom whenever surface water is present. - iii. <u>Temporary erosion controls</u>. All temporary erosion controls will be inplace and appropriately installed downslope of project activity within the riparian area
until site restoration is complete. - i. Heavy Equipment. Restrict use of heavy equipment as follows: - i. <u>Choice of equipment</u>. When heavy equipment will be used, the equipment selected will have the least adverse effects on the environment (*e.g.*, minimally sized, low ground pressure equipment). - ii. <u>Vehicle and material staging</u>. Store construction materials, and fuel, operate, maintain and store vehicles as follows. - (1) To reduce the staging area and potential for contamination, ensure that only enough supplies and equipment to complete a specific job will be stored on-site. - (2) Complete vehicle staging, cleaning, maintenance, refueling, and fuel storage in a vehicle staging area placed 150 feet or more from any stream, waterbody or wetland, unless otherwise approved in writing by NOAA Fisheries. - (3) Inspect all vehicles operated within 150 feet of any stream, waterbody or wetland daily for fluid leaks before leaving the vehicle staging area. Repair any leaks detected in the vehicle staging area before the vehicle resumes operation. Document inspections in a record that is available for review on request by Corps or NOAA Fisheries. - (4) Before operations begin and as often as necessary during operation, steam clean all equipment that will be used below bankfull elevation until all visible external oil, grease, mud, and other visible contaminates are removed. - (5) Diaper all stationary power equipment (*e.g.*, generators, cranes, stationary drilling equipment) operated within 150 feet of any stream, waterbody or wetland to prevent leaks, unless suitable containment is provided to prevent potential spills from entering any stream or waterbody. - j. <u>Site preparation</u>. Conserve native materials for site restoration. - i. If possible, leave native materials where they are found. - ii. If materials are moved, damaged or destroyed, replace them with a functional equivalent during site restoration. - iii. Stockpile any large wood⁹, native vegetation, weed-free topsoil, and native channel material displaced by construction for use during site restoration. - k. <u>Earthwork</u>. Complete earthwork (including drilling, excavation, dredging, filling and compacting) as quickly as possible. - i. <u>Site stabilization</u>. Stabilize all disturbed areas, including obliteration of temporary roads, following any break in work unless construction will resume within four days. - ii. <u>Source of materials</u>. Obtain boulders, rock, woody materials and other natural construction materials used for the project outside the riparian area. - 1. <u>Site restoration</u>. Prepare and carry out a site restoration plan as necessary to ensure that all streambanks, soils and vegetation disturbed by the project are cleaned up and restored as follows. Make the written plan available for inspection on request by the COE or NOAA Fisheries. - i. General considerations. - (1) Restoration goal. The goal of site restoration is renewal of habitat access, water quality, production of habitat elements (*e.g.*, large woody debris), channel conditions, flows, watershed conditions and other ecosystem processes that form and maintain productive fish habitats. - (2) <u>Streambank shaping</u>. Restore damaged streambanks to a natural slope, pattern and profile suitable for establishment of permanent woody vegetation, unless precluded by pre-project conditions (*e.g.*, a natural rock wall). - (3) Revegetation. Replant each area requiring revegetation before the first April 15 following construction. Use a diverse assemblage of species native to the project area or region, including grasses, forbs, shrubs and trees. Noxious or invasive species may not be used. - (4) <u>Pesticides</u>. Take of ESA-listed species caused by any aspect of pesticide use is not included in the exemption to the ESA take prohibitions provided by this incidental take statement. Pesticide use must be evaluated in an individual consultation, although mechanical or other methods may be used to control weeds and unwanted vegetation. - (5) <u>Fertilizer</u>. Do not apply surface fertilizer within 50 feet of any stream channel. ⁹ For purposes of this Opinion only, 'large wood' means a tree, log, or rootwad big enough to dissipate stream energy associated with high flows, capture bedload, stabilize streambanks, influence channel characteristics, and otherwise support aquatic habitat function, given the slope and bankfull channel width of the stream in which the wood occurs. See, Oregon Department of Forestry and Oregon Department of Fish and Wildlife, *A Guide to Placing Large Wood in Streams*, May 1995 (www.odf.state.or.us/FP/RefLibrary/LargeWoodPlacemntGuide5-95.doc). - ii. <u>Plan contents</u>. Include each of the following elements. - (1) Responsible party. The name and address of the party(s) responsible for meeting each component of the site restoration requirements, including providing and managing any financial assurances and monitoring necessary to ensure restoration success. - (2) <u>Baseline information</u>. This information may be obtained from existing sources (*e.g.*, land use plans, watershed analyses, subbasin plans), where available. - (a) A functional assessment of adverse effects, *i.e.*, the location, extent and function of the riparian and aquatic resources that will be adversely affected by construction and operation of the project. - (b) The location and extent of resources surrounding the restoration site, including historic and existing conditions. - (3) <u>Goals and objectives</u>. Restoration goals and objectives that describe the extent of site restoration necessary to offset adverse effects of the project, by aquatic resource type. - (4) <u>Performance standards</u>. Use these standards to help design the plan and to assess whether the restoration goal is met. While no single criterion is sufficient to measure success, the intent is that these features should be present within reasonable limits of natural and management variation. - (a) Bare soil spaces are small and well dispersed. - (b) Soil movement, such as active rills or gullies and soil deposition around plants or in small basins, is absent or slight and local. - (c) If areas with past erosion are present, they are completely stabilized and healed. - (d) Plant litter is well distributed and effective in protecting the soil with few or no litter dams present. - (e) Native woody and herbaceous vegetation, and germination microsites, are present and well distributed across the site. - (f) Vegetation structure is resulting in rooting throughout the available soil profile. - (g) Plants have normal, vigorous growth form, and a high probability of remaining vigorous, healthy and dominant over undesired competing vegetation. - (h) High impact conditions confined to small areas necessary access or other special management situations. - (i) Streambanks have less than 5% exposed soils with margins anchored by deeply rooted vegetation or coarse-grained alluvial debris. - (j) Few upland plants are in valley bottom locations, and a continuous corridor of shrubs and trees provide shade for the entire streambank. - (5) <u>Work plan</u>. Develop a work plan with sufficient detail to include a description of the following elements, as applicable. - (a) Boundaries for the restoration area. - (b) Restoration methods, timing, and sequence. - (c) Water supply source, if necessary. - (d) Woody native vegetation appropriate to the restoration site. This must be a diverse assemblage of species that are native to the project area or region, including grasses, forbs, shrubs and trees. This may include allowances for natural regeneration from an existing seed bank or planting. - (e) A plan to control exotic invasive vegetation. - (f) Elevation(s) and slope(s) of the restoration area to ensure they conform with required elevation and hydrologic requirements of target plant species. - (g) Geomorphology and habitat features of stream or other open water. - (h) Site management and maintenance requirements. - (6) Five-year monitoring and maintenance plan. - (a) A schedule to visit the restoration site annually for 5 years or longer as necessary to confirm that the performance standards are achieved. Despite the initial 5-year planning period, site visits and monitoring will continue from year-to-year until the Corps certifies that site restoration performance standards have been met. - (b) During each visit, inspect for and correct any factors that may prevent attainment of performance standards (*e.g.*, low plant survival, invasive species, wildlife damage, drought). - (c) Keep a written record to document the date of each visit, site conditions and any corrective actions taken. - 2. To implement reasonable and prudent measure #2 (over-water and in-water structures), the COE shall ensure that: - a. <u>General</u>. The following general conditions apply to over-water and in-water structures. - i. <u>Docks, piers, walkways or other over-water facilities.</u> - (1) For docks and walkways more than 6 feet wide, one of the following designs will be followed. ¹⁰ Use references sites to select vegetation for the mitigation site whenever feasible. Historic reconstruction, vegetation models, or other ecologically-based methods may also be used as appropriate. - (a) 8-foot wide floats shall incorporate 18-24 inches of grating between every 4 feet of length. - (b) Another design for structures wider than 6 feet, approved in writing by NOAA Fisheries. - (2) For covered moorages the following features shall be included in the design: - (a) Two 4-foot by 6-foot windows on all sides of the building. - (b) Two 4-foot by 4-foot skylights in the roof or a translucent roof. - (c) Garage doors shall be of translucent material. - ii. <u>Piscivorus bird deterrence</u>. Fit all pilings, mooring buoys, and navigational aids (*e.g.*, channel markers) with devices to prevent perching by piscivorus birds. - iii. Removal of large
wood debris obstructions. When floating or submerged large wood debris must be moved to allow the reasonable use of an overwater or in-water facility, ensure that the wood is returned to the water downstream where it will continue to provide aquatic habitat function. - iv. Flotation. - (1) Permanently encapsulate all synthetic flotation material to prevent breakup into small pieces and dispersal in water. - (2) Install mooring buoys as necessary to ensure that moored boats do not ground out or prop wash the bottom. - 3. To implement reasonable and prudent measure #3 (monitoring), the Corps shall: - a. <u>Implementation monitoring</u>. Ensure that each applicant submits a monitoring report to the Corps within 120 days of project completion describing the applicant's success meeting his or her permit conditions. Each project level monitoring report will include the following information. - i. <u>Project identification</u> - (1) Applicant name, permit number, and project name. - (2) Type of activity. - (3) Project location, including any compensatory mitigation site(s), by 5th field HUC and by latitude and longitude as determined from the appropriate USGS 7-minute quadrangle map. - (4) Corps contact person. - (5) Starting and ending dates for work completed. - ii. <u>Photo documentation</u>. Photos of habitat conditions at the project and any compensation site(s), before, during, and after project completion.¹¹ ¹¹ Relevant habitat conditions may include characteristics of channels, eroding and stable streambanks in the project area, riparian vegetation, water quality, flows at base, bankfull and over-bankfull stages, and other visually discernable environmental conditions at the project area, and upstream and downstream of the project. - (1) Include general views and close-ups showing details of the project and project area, including pre and post construction. - (2) Label each photo with date, time, project name, photographer's name, and a comment about the subject. ## iii. Other data. - (1) <u>Pollution control</u>. A summary of pollution and erosion control inspections, including any erosion control failure, contaminant release, and correction effort. - (2) <u>Pilings</u>. - (a) Number and type of pilings removed, including the number of pilings (if any) that broke during removal. - (b) Number, type, and diameter of any pilings installed (*e.g.*, untreated wood, treated wood, hollow steel). - (c) Description of how pilings were installed and any sound attenuation measures used.. - (3) <u>Site preparation</u>. - (a) Total cleared area riparian and upland. - (b) Total new impervious area. - (4) Streambank protection. - (a) Type and amount of materials used. - (b) Project size one bank or two, width and linear feet. - (5) <u>Water dependent structures and related features</u>. - (a) Area of new over-water structure. - (b) Streambank distance to nearest existing water dependent structure -- upstream and down. - (6) <u>Minor discharge and excavation/dredging</u>. - (a) Volume of dredged material. - (b) Water depth before dredging and within one week of completion. - (c) Verification of upland dredge disposal. - (7) <u>Site restoration</u>. Photo or other documentation that site restoration performance standards were met. - (8) <u>Long-term habitat loss</u>. The same elements apply as for monitoring site restoration. - iv. <u>Site restoration or compensatory mitigation monitoring</u>. In addition to the 120-day implementation report, each applicant will submit an annual report by December 31 that includes the written record documenting the date of each visit to a restoration site or mitigation site, and the site conditions and any corrective action taken during that visit. Reporting will continue from year to year until the Corps certifies that site restoration or compensatory mitigation performance standards have been met. b. NOTICE. If a sick, injured or dead specimen of a threatened or endangered species is found, the finder must notify the Vancouver Field Office of NOAA Fisheries Law Enforcement at 360.418.4246. The finder must take care in handling of sick or injured specimens to ensure effective treatment, and in handling dead specimens to preserve biological material in the best possible condition for later analysis of cause of death. The finder also has the responsibility to carry out instructions provided by Law Enforcement to ensure that evidence intrinsic to the specimen is not disturbed unnecessarily. #### 3. MAGNUSON-STEVENS ACT ## 3.1 Background The Magnuson-Stevens Fishery Conservation and Management Act (MSA), as amended by the Sustainable Fisheries Act of 1996 (Public Law 104-267), established procedures designed to identify, conserve, and enhance essential fish habitat (EFH) for those species regulated under a Federal fisheries management plan. Pursuant to the MSA: - Federal agencies must consult with NOAA Fisheries on all actions, or proposed actions, authorized, funded, or undertaken by the agency, that may adversely affect EFH (§305(b)(2)). - NOAA Fisheries must provide conservation recommendations for any Federal or state action that would adversely affect EFH (§305(b)(4)(A)). - Federal agencies must provide a detailed response in writing to NOAA Fisheries within 30 days after receiving EFH conservation recommendations. The response must include a description of measures proposed by the agency for avoiding, mitigating, or offsetting the impact of the activity on EFH. In the case of a response that is inconsistent with NOAA Fisheries EFH conservation recommendations, the Federal agency must explain its reasons for not following the recommendations (§305(b)(4)(B)). EFH means those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity (MSA §3). For the purpose of interpreting this definition of EFH: "Waters" include aquatic areas and their associated physical, chemical, and biological properties that are used by fish and may include aquatic areas historically used by fish where appropriate; "substrate" includes sediment, hard bottom, structures underlying the waters, and associated biological communities; "necessary" means the habitat required to support a sustainable fishery and the managed species' contribution to a healthy ecosystem; "spawning, breeding, feeding, or growth to maturity" covers a species' full life cycle (50 CFR 600.10), and "adverse effect" means any impact which reduces quality and/or quantity of EFH, and may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey or reduction in species fecundity), site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions (50 CFR 600.810). EFH consultation with NOAA Fisheries is required regarding any Federal agency action that may adversely affect EFH, including actions that occur outside EFH, such as certain upstream and upslope activities. The objectives of this EFH consultation are to determine whether the proposed action would adversely affect designated EFH and to recommend conservation measures to avoid, minimize, or otherwise offset potential adverse effects to EFH. ## 3.2 Identification of EFH Pursuant to the MSA, the Pacific Fisheries Management Council (PFMC) has designated EFH for federally-managed fisheries within the waters of Washington, Oregon, and California. Designated EFH for groundfish and coastal pelagic species encompasses all waters from the mean high water line and upriver extent of saltwater intrusion in river mouths, along the coasts of Washington, Oregon and California, seaward to the boundary of the U.S. exclusive economic zone (370.4 km) (PFMC 1998a, 1998b). Freshwater EFH for Pacific salmon includes all those streams, lakes, ponds, wetlands, and other waterbodies currently, or historically accessible to salmon in Washington, Oregon, Idaho, and California, except areas upstream of certain impassable man-made barriers (as identified by the PFMC 1999), and longstanding, naturally-impassable barriers (i.e., natural waterfalls in existence for several hundred years) (PFMC 1999). In estuarine and marine areas, designated salmon EFH extends from the nearshore and tidal submerged environments within state territorial waters out to the full extent of the exclusive economic zone (370.4 km) offshore of Washington, Oregon, and California north of Point Conception to the Canadian border (PFMC 1999). Detailed descriptions and identifications of EFH are contained in the fishery management plans for groundfish (PFMC 1998a), coastal pelagic species (PFMC 1998b), and Pacific salmon (PFMC 1999). Casillas *et al.* (1998) provides additional detail on the groundfish EFH habitat complexes. Assessment of the potential adverse effects to these species' EFH from the proposed action is based, in part, on these descriptions and on information provided by the COE. ## 3.3 Proposed Actions The proposed action and action area are detailed above in sections 1.2 and 2.1.1 of this Opinion. The action area includes habitats that have been designated as EFH for various life-history stages of starry flounder *(Platichthys stellatus)* and chinook and coho salmon. ## 3.4 Effects of Proposed Action As described in detail in section 2.1.5 of this document, the proposed action will result in short-term adverse effects to a variety of habitat parameters. NOAA Fisheries believes that the proposed action will cause a minor, short-term degradation of anadromous salmonid habitat due to increases in turbidity and sound effects from pile driving. Effects of over-water structures will be minimized by incorporating translucent material and grating into the dock and covered moorage design. ## 3.5 Conclusion NOAA Fisheries concludes that the proposed action will adversely affect the EFH for starry flounder (*Platichthys stellatus*) and chinook and coho salmon. ## 3.6 EFH Conservation Recommendations Pursuant to section 305(b)(4)(A) of the
MSA, NOAA Fisheries is required to provide EFH conservation recommendations to Federal agencies regarding actions which may adversely affect EFH. While NOAA Fisheries understands that the conservation measures described in the BA will be implemented by the COE it does not believe that these measures are sufficient to address the adverse impacts to EFH described above. However, the terms and conditions outlined in section 2.2.3 are generally applicable to designated EFH for the species designated in section 3.3, and address these adverse effects. Consequently, NOAA Fisheries incorporates them here as EFH conservation measures. ## 3.7 Statutory Response Requirement Pursuant to the MSA (§305(b)(4)(B)) and 50 CFR 600.920(j), Federal agencies are required to provide a detailed written response to NOAA Fisheries' EFH conservation recommendations within 30 days of receipt of these recommendations. The response must include a description of measures proposed to avoid, mitigate, or offset the adverse impacts of the activity on EFH. In the case of a response that is inconsistent with the EFH conservation recommendations, the response must explain the reasons for not following the recommendations, including the scientific justification for any disagreements over the anticipated effects of the proposed action and the measures needed to avoid, minimize, mitigate, or offset such effects. ## 3.8 Supplemental Consultation The COE must reinitiate EFH consultation with NOAA Fisheries if the proposed action is substantially revised in a manner that may adversely affect EFH, or if new information becomes available that affects the basis for NOAA Fisheries' EFH conservation recommendations (50 CFR 600.920(k)). #### 4. LITERATURE CITED - Abbott, R. and E. Bing-Sawyer. 2002. Assessment of pile driving impacts on the Sacramento blackfish (*Othodon microlepidotus*). Draft report prepared for Caltrans District 4. October 10, 2002. - Ainley, D.G. 1984. Cormorants Family Phalacrocoracidae. Pages 92- 101 in D. Haley ed. Seabirds of the eastern North Pacific and Arctic waters. Pacific Search Press, Seattle. 214 p. - Beamesderfer, R.C. and B.E. Rieman. 1991. Abundance and Distribution of Northern Squawfish, Walleyes, and Smallmouth Bass in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:439-447. - Bell, M.C. 1991. Fisheries handbook of Engineering requirements and biological criteria. Fish Passage Development and Evaluation Program. U.S. Army Corps of Engineers. North Pacific Division. - Bevelhimer, M.S. 1996. Relative importance of temperature, food, and physical structure to habitat choice by smallmouth bass in laboratory experiments. Trans. Am. Fish. Soc. 125:274-283. - Birtwell, I. K., G. F. Hartman, B. Anderson, D. J. McLean and J. G. Malic. 1984. A brief investigation of Arctic Grayling (*Thymallus arcticus*) and aquatic invertebrates in the Minto Creek drainage, Mayo, Yukon Territory: an area subjected to placer mining. Canadian Technical Report of Fisheries and Aquatic Sciences 1287. - Blackwell, B.F., W.B. Krohn, N.R. Dube and A.J. Godin. 1997. Spring prey use by double-crested cormorants on the Penobscot River, Maine, USA. Colonial Waterbirds 20(1):77-86. - Booth, D.B. 1991. Urbanization and the natural drainage system: impacts, solutions, and prognoses. The Northwest Environmental Journal 7:93-118. - Booth, D.B. and C.R. Jackson. 1997. Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. Am. Wat. Resour. Assoc. 33:1077-1090. - Caltrans. 2001. Fisheries Impact Assessment, Pile Installation Demonstration Project for the San Francisco Oakland Bay Bridge, East Span Seismic Safety Project, August 2001. 9 pp. - Carlson, T., G. Ploskey, R. L. Johnson, R. P. Mueller and M. A. Weiland. 2001. Observations of the behavior and distribution of fish in relation to the Columbia River navigation channel and channel maintenance activities. Review draft report to the Portland District Corps of Engineers prepared by Pacific Northwest National Laboratory, Richland, Washington. 35 p. - Casillas, E., L. Crockett, Y. deReynier, J. Glock, M. Helvey, B. Meyer, C. Schmitt, M.Yoklavich, A. Bailey, B. Chao, B. Johnson and T. Pepperell. 1988. Essential Fish Habitat West Coast Groundfish Appendix. National Marine Fisheries Service, Montlake, Washington. - COE (US Army Corps of Engineers). 1977. Nehalem Wetlands Review: A Comprehensive Assessment of the Nehalem Bay and River (Oregon). U.S. Army Engineer District, Portland, Oregon. [Page count unknown]. - Colle, D.E., R.L. Cailteux, and J.V. Shireman. 1989. Distribution of Florida largemouth bass in a lake after elimination of all submersed aquatic vegetation. N. Am. Journal of Fish. Mgmt. 9:213-218. - Collis, K., R.E. Beaty and B.R. Crain. 1995. Changes in Catch Rate and Diet of Northern Squawfish Associated With the Release of Hatchery-Reared Juvenile Salmonids in a Columbia River Reservoir. North American Journal of Fisheries Management 15:346-357. - Derby, C.E. and J.R. Lovvorn. 1997. Predation on fish by cormorants and pelicans in a coldwater river: a field and modeling study. Can. J. Fish. Aquat. Soc. 54:1480-1493. - DeVore, P. W., L. T. Brooke and W. A. Swenson. 1980. The effects of red clay turbidity and sedimentation on aquatic life in the Nemadji River system. Impact of nonpoint pollution control on western Lake Superior. S. C. Andrews, R. G. Christensen, and C. D. Wilson. Washington, D.C., U.S. Environmental Protection Agency. EPA Report 905/9-79-002-B. - Dolat, S.W. 1997. Acoustic measurements during the Baldwin Bridge demolition (final, dated March 14, 1997). Prepared for White Oak Construction by Sonalysts, Inc, Waterford, CT.. 34 p. + appendices. Enger *et al.* 1992. - Doppelt, B., M. Scurlock, C. Frissell and J. Karr. 1993. *Entering the Watershed: A New Approach to Save America's River Ecosystems*. Island Press, Washington, D.C. 504pp. - Duffy, D.C. 1995. Why is the double-crested cormorant a problem? Insights from cormorant ecology and human sociology. Pages 25-32 in The Double-crested Cormorant: biology, conservation and management (D.N. Nettleship and D.C. Duffy, eds.) Colonial Waterbirds 18 (Special Publication 1). - Eisler, R. 1998. Copper hazards to fish, wildlife, and invertebrates: A synoptic review. U.S. Geological Survey, Biological Sciences Report USGS/BRD/BSR 1998-0001. Contaminated hazard reviews report 34. - Enger, P.S., H.E. Karlsen, F.R. Knudsen, and O. Sand. 1993. Detection and reaction of fish to infrasound. Fish Behaviour in Relation to Fishing Operations., 1993, pp. 108-112, ICES marine science symposia. Copenhagen vol. 196. - Frissell, C.A. 1993. A new strategy for watershed restoration and recovery of Pacific salmon in the Pacific Northwest. Prepared for Pacific Rivers Council. Eugene, Oregon. - Gerking, S.D. 1994. Feeding Ecology of Fish. Academic Press Inc., San Diego, CA. 416 p. - Harrison, C.S. 1984. Terns Family Laridae Pages 146-160 in D. Haley, D. ed. Seabirds of eastern North Pacific and Arctic waters. Pacific Search Press. Seattle. 214 p. - Harrison, P. 1983. Seabirds: an Identification Guide. Houghton Mifflin Company. Boston. 448 pp. - Helfman, G.S. 1981. The advantage to fishes of hovering in shade. Copeia. 1981(2):392-400. - Henjum, M.G., J.R. Karr, D.L. Bottom, D.A. Peery, J.C. Bednarz, S.G. Wright, S.A. Beckwitt and E. Beckwitt. 1994. Interim protection for late-successional forests, fisheries, and watersheds: national forests east of the Cascade Crest, Oregon, and Washington. *The Wildlife Society*. Bethesda, Maryland. - Hobson, E. S. 1979. Interactions between piscivorous fishes and their prey. Pages 231-242 in R.H. Stroud and H. Clepper, editors. Predator-prey systems in fisheries management. Sport Fishing Institute, Washington D.C. - Hoffman, R.S., P.D. Capel, and S.J. Larson. 2000. Comparison of pesticides in eight U.S. urban streams. Environmental Toxicology and Chemistry. 19:2249-58. - Howick, G. L. and W.J. O'Brien. 1983. Piscivorous feeding behavior of largemouth bass: an experimental analysis. Trans. Am. Fish. Soc. 112:508-516. - ISG (Independent Science Group). 1996. Return to the River: Restoration of Salmonid Fishes in the Columbia River Ecosystem. ISG, Report #96-6, for the Northwest Power Planning Council, Portland, Oregon. - Keevin, T.M.. 1998. A review of natural resource agency recommendations for mitigating the impacts of underwater blasting. Rev. Fish. Sci. 6(4):281-313. - Klein, R. D. 1979. Urbanization and stream quality impairment. Water Resources Bulletin. 15(4): 948-963. - Knudsen, F.R., C.B. Schreck, S.M. Knapp, P.S. Enger, and O. Sand. 1997. Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. Journal of Fish Biology, 51:824-829. - Krohn, W.B., R.B. Allen, J.R. Moring and A.E. Hutchinson. 1995. Double-crested cormorants in New England; population and management histories. Pages 99-109 in The Double-crested Cormorant: biology, conservation and management (D.N. Nettleship and D.C. Duffy, eds.) Colonial Waterbirds 18 (Special Publication 1). - LCREP (Lower Columbia River Estuary Program). 1999. Comprehensive Conservation and Management Plan. Volume 1, June 1999. LCREP, Portland, Oregon. - Lloyd, D.S. 1987. Turbidity as a water quality standard for habitats in Alaska. North American Journal of Fisheries Management 7:34-35. - Longmuir, C., and T. Lively. 2001. Bubble curtain systems for use during marine pile driving. Report by Fraser River Pile & Dredge Ltd., New Westminster, British.Columbia. 9 pp. - Lucchetti, G. and R. Fuerstenberg. 1993. Management of coho salmon habitat in urbanizing landscapes of King County, Washington, USA. Pages 308-317 in Proceedings of the Coho Salmon Workshop. Canadian Department of Fisheries and Oceans, Habitat Management Sector, Policy and Information Unit, Vancouver, British Columbia. - Mesing, C.L. and A.M. Wicker. 1986. Home range, spawning migrations, and homing of radio-tagged
Florida largemouth bass in two central Florida lakes. Trans. Am. Fish. Soc. 115:286-295. - Nedwell, J., and B. Edwards. 2002. Measurements of underwater noise in the Arun River during piling at County Wharf, Littlehampton. Report by Subacoustech, Ltd to David Wilson Homes, Ltd. - NMFS (National Marine Fisheries Service). 1998. Position Document for the Use of Treated Wood in Areas within Oregon Occupied by Endangered Species Act Proposed and Listed Anadromous Fish Species. - NMFS (National Marine Fisheries Service). 2003. Biological Opinion for the Bonneville Power Administration Habitat Improvement Program. See website at: http://www.nwr.noaa.gov/1publcat/allbiops.htm - NWPPC (Northwest Power Planning Council). 1992. Information on water quality and quantity contained in the salmon and steelhead subbasin plans above Bonneville Dam. Document #93-8. Portland, Oregon. - Omernick, J. M. 1977. Nonpoint source stream nutrient level relationships: A nationwide study. U.S. EPA, Ecological Research Series Rep. EPA-600/3-77-105. - OWRD (Oregon Water Resources Department). 1993. Memorandum re: weak stocks and water supply conflicts, to D. Moscowitz *et al.* from T. Kline and B. Fuji, OWRD, Salem. September 17, 1993. - Paul, Michael J. and Judy L. Meyer. 2001. Streams in the Urban Landscape. Annual Review Ecol. Syst. 32:333-365. - Pentec Environmental. 2003. Mukilteo Public Access Dock Pile Driving Air Bubble Curtain and Acoustic Monitoring, Mukilteo, Washington. 18 p. + Figs. and Appendices. - Petersen, J.M. and D.M. Gadomski. 1994. Light-Mediated Predation by Northern Squawfish on Juvenile Chinook Salmon. Journal of Fish Biology 45 (supplement A), 227-242. - Petersen, C.J., D.B. Jepsen, R.D. Nelle, R.S. Shively, R.A. Tabor, T.P. Poe. 1990. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs. Annual Report of Research. Bonneville Power Administration Contract DE-AI79-90BP07096. Project No. 90-078. 53 pp. - Pflug, D.E. and G.B. Pauley. 1984. Biology of Smallmouth Bass (*Micropterus dolomieui*) in Lake Sammamish, Washington. Northwest Science 58(2):119-130. - PFMC (Pacific Fishery Management Council), 1998a. Final Environmental Assessment/Regulatory Review for Amendment 11 to the Pacific Coast Groundfish Fishery Management Plan. October 1998. - PFMC (Pacific Fishery Management Council), 1998b. The Coastal Pelagic Species Fishery Management Plan: Amendment 8. Portland, Oregon. - PFMC (Pacific Fishery Management Council). 1999. Amendment 14 to the Pacific Coast Salmon Plan. Appendix A: Description and Identification of Essential Fish Habitat, Adverse Impacts and Recommended Conservation Measures for Salmon. Portland, Oregon. - Phillips, S.H. 1990. A guide to the construction of freshwater artificial reefs. Sportfishing Institute. Washington D.C. 24 pp. - Pitt, R. and M. Bozeman. 1980. Water quality and biological effects of urban runoff on Coyote Creek. Phase I Preliminary survey. U.S. EPA Environmental Protection Technology Series Rep. EPA-600/2-80-104. - Poe, T.P, H.C. Hansel, S. Vigg, D.E. Palmer, and L.A. Prendergast. 1991. Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:405-420. - Raibley, P.T., K.S. Irons, T.M. O'Hara, and K.D. Blodgett. 1997. Winter habitats used by largemouth bass in the Illinois River, a large river-floodplain ecosystem. N. Am. J. Fish. Mgmt. 17:401-412. - Richey, J. S. 1982. Effects of Urbanization on a Lowland Stream in western Washington. Doctoral dissertation. University of Washington, Seattle. 248 pg. - Quigley, T.M. and S.J. Arbelbide. 1997. An assessment of ecosystem components in the Interior Columbia River Basin and portions of the Klamath and Great Basins. Volume 3. In: T.M. Quigley (editor). The Interior Columbia Basin Ecosystem Management Project: Scientific Assessment, 4 volumes. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-405, Portland, Oregon. - Reyff, J.A. 2003. Underwater sound levels associated with seismic retrofit construction of the Richmond-San Rafael Bridge. Document in support of Biological Assessment for the Richmond-San Rafael Bridge Seismic Safety Project. January, 31, 2003. 18 pp. - Rieman, B.E. and R.C. Beamesderfer. 1991. Estimated Loss of Juvenile Salmonids to Predation by Northern Squawfish, Walleyes, and Smallmouth Bass in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:448-458. - Rogers, P.H. and M. Cox. 1988. Underwater sound as a biological stimulus. pp. 131-149 *in*: Sensory biology of aquatic animals. Atema, J, R.R. Fay, A.N. Popper and W.N. Tavolga (eds.). Springer-Verlag. New York. - Sand, O., P.S. Enger, H.E. Karlsen, F. Knudsen, T. Kvernstuen. 2000. Avoidance responses to infrasound in downstream migrating European silver eels, Anguilla anguilla. Environmental Biology of Fishes, 57:327-336. - Scannell, P.O. 1988. Effects of elevated sediment levels from placer mining on survival and behavior of immature arctic grayling. Alaska Cooperative Fishery Unit, University of Alaska. Unit Contribution 27. - Scholtz, N.C., N.K. Truelore, B.L. French, B.A. Berejikian, T.P. Quinn, E. Casillas, and T.K. Collier. 2000. Diazinon disrupts anti-predator and homing behaviors in Chinook salmon (O. tshawytscha). Can.J.Fish.Aquat.Sci. 57:1911-1918. - Schueler, T.R. 1994. The importance of imperviousness. Watershed Prot. Tech. 1:100-111. - Servizi, J. A. and Martens, D. W. 1991. Effects of temperature, season, and fish size on acute lethality of suspended sediments to coho salmon. Canadian Journal of Fisheries and Aquatic Sciences 49:1389-1395. - Sigler, J. W., T.C. Bjorn and F.H. Everest. 1984. Effects of chronic turbidity on density and growth of steelhead and coho salmon. Trans. Am. Fish. Soc. 111:63-69. - Sorensen, E.M.B. 1991. Metal poisoning in fish. CRC Press, Boca Raton, FL. - Spence, B.C., G.A. Lomnicky, R.M. Hughes and R.P. Novitzki. 1996. An ecosystem approach to salmonid conservation. ManTech Environmental Research Services, Inc., Corvallis, Oregon, to NMFS, Habitat Conservation Division, Portland, Oregon (Project TR-4501-96-6057). - Stanford, J.A. and J.V. Ward. 1992. Management of aquatic resources in large catchments: recognizing interactions between ecosystem connectivity and environmental disturbance. Pages 91-124 In: R.J. Naiman (editor). Watershed Management: Balancing Sustainability and Environmental Change. Springer-Verlag, publisher, New York. 542pp. - Stotz, T. and J. Colby. 2001. January 2001 dive report for Mukilteo wingwall replacement project. Washington State Ferries Memorandum. 5 pp. + appendices. - Taylor, E., A. Steen, and D. Fritz. 1995. A review of environmental effects from oil spills into inland waters. Pages 1095-1115 in: Proc. Of the 18th Arctic and Marine Oil Spill Program Tech. Sem., June 14-16, Edmonton, Env. Canada - U.S. Geological Survey (USGS). 1999a. The quality of our nation's waters-nutrients and pesticides. USGS Circular 1225. - U.S. Geological Survey (USGS). 1999b. Pesticides detected in urban streams during rainstorms and relations to retail sales of pesticides in King County, Washington. USGS Fact Sheet 097-99. - Walters, D.A., W.E. Lynch, Jr., and D.L. Johnson. 1991. How depth and interstice size of artificial structures influence fish attraction. N. Am. J. Fish. Mgmt. 11:319-329. - Wanjala, B.S., J.C. Tash, W.J. Matter and C.D. Ziebell. 1986. Food and habitat use by different sizes of largemouth bass (*Micropterus salmoides*) in Alamo Lake, Arizona. Journal of Freshwater Ecology Vol. 3(3):359-368. - Ward, D.L. and A.A. Nigro. 1992. Differences in Fish Assemblages Among Habitats Found in the Lower Willamette River, Oregon: Application of and Problems With Multivariate Analysis. Fisheries Research 13:119-132. - Ward, D.L., A.A. Nigro, R.A. Farr, and C.J. Knutsen. 1994. Influence of Waterway Development on Migrational Characteristics of Juvenile Salmonids in the Lower Willamette River, Oregon. North American Journal of Fisheries Management 14:362-371. - Warner, J.E. and Solomon, K.R. 1990. Acidity as a Factor in Leaching of Copper, Chromium and Arsenic from CCA-Treated Dimension Lumber. Environmental Toxicology and Chemistry 9:1331-1337. - Wilber, W.G. and J.V. Hunter. 1979. The impact of urbanization on the distribution of heavy metals in bottom sediments of the Saddle River. Water Resources Bulletin. 15:790-800. - Würsig, B., C.R. Greene, Jr., and T.A. Jefferson. 2000. Development of an air bubble curtain to reduce underwater noise from percussive piling. Marine Environmental Research 49: 19-93. **Table 1.** References for Additional Background on Listing Status, Biological Information, Protective Regulations, and Critical Habitat Elements for the ESA-Listed Species Considered in this Consultation. | Species ESU | Status | Critical Habitat ¹² | Protective Regulations | Biological Information, Historical Population Trends | | | |---------------------------------|--------------------------------------|-------------------------------------|------------------------|--|--|--| | Chinook salmon (O. Tshawytscha) | | | | | | | | Snake River fall-run | T 4/22/92; 57 FR 14653 ¹³ | 12/28/93; 58 FR 68543 | 7/10/00; 65 FR 42422 | Waples et al. 1991b; Healey 1991 | | | | Snake River spring/summer-run | T 4/22/92; 57 FR 14653 ² | 10/25/99; 64 FR 57399 ¹⁴ | 7/10/00; 65 FR 42422 | Matthews and Waples 1991; Healey 1991 | | | | Lower Columbia River | T 3/24/99; 64 FR 14308 | | 7/10/00; 65 FR 42422 | Myers et al. 1998; Healey 1991 | | | | Upper Willamette River | T 3/24/99; 64 FR 14308 | | 7/10/00; 65 FR 42422 | Myers et al. 1998; Healey 1991 | | | | Upper Columbia River spring-run | E 3/27/99; 64 FR 14308 | | 7/10/00; 65 FR 42422 | Myers et al. 1998; Healey 1991 | | | | Chum
salmon (O. keta) | | | | | | | | Columbia River | T 3/25/99; 64 FR 14508 | | 7/10/00; 65 FR 42422 | Johnson et al. 1997; Salo 1991 | | | | Sockeye salmon (O. nerka) | | | | | | | | Snake River | E 11/20/91; 56 FR 58619 | 12/28/93; 58 FR 68543 | 11/20/91; 56 FR 58619 | Waples et al. 1991a; Burgner 1991 | | | | Steelhead (O. mykiss) | | | | | | | | Lower Columbia River | T 3/19/98; 63 FR 13347 | | 7/10/00; 65 FR 42422 | Busby et al. 1995; 1996 | | | | Middle Columbia River | T 3/25/99; 64 FR 14517 | | 7/10/00; 65 FR 42422 | Busby et al. 1995; 1996 | | | | Upper Columbia River | E 8/18/97; 62 FR 43937 | | 7/10/00; 65 FR 42422 | Busby et al. 1995; 1996 | | | | Upper Willamette River | T 3/25/99; 64 FR 14517 | | 7/10/00; 65 FR 42422 | Busby et al. 1995; 1996 | | | | Snake River Basin | T 8/18/97; 62 FR 43937 | | 7/10/00; 65 FR 42422 | Busby et al. 1995; 1996 | | | ¹² Critical habitat designations (excluding Snake River chinook and sockeye salmon) were vacated and remanded on May 7, 2002 by a Federal Court Also see 6/3/92; 57 FR 23458, correcting the original listing decision by refining ESU ranges. ¹⁴ This corrects the original designation of 12/28/93 (58 FR 68543) by excluding areas above Napias Creek Falls, a naturally impassable barrier.